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NOMENCLATURE, SYMBOLS, AND ASSORTED MARKS

1 .3
- it - rectangular Cartesian coordinates

X1 X1 Xj  - general curvilinear coordinates

- general coordinates on middle surface of undeformed

shell

- coordinate normal to middle surface of undeformed shell

G - polar parameters on middle surface of undeformed shell

- cartesian parameters on middle surface of undeformed
shell

- radius of revolution of middle surface of undeformed
paraboloid

O - angular coordinate of middle surface of undeformed
paraboloid

v a - slope of meridian tangent to middle surface of
paraboloid

- angle which meridianal tangent makes with tangent plane

to apex of paraboloid (see figure 2.1.3)

- focal length of middle surface of paraboloid

- radius vector to point on middle surface of undeformed
shell

- radius vector to point in undeformed shell.
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R@ - radius vector to point on middle surface of deformed

shell

- radius vector to point in deformed shell

0.1 C x - covariant base vectors of middle surface of undeformed
shell

- contravariant base vectors of middle surface of un-

deformed shell

- unit normal to middle surface of undeformed shell

04' 3 SJ - covariant base vectors of undeformed body

-1 1 - contravariant base vectors of undeformed body

- covariant metric tensor of undeformed body

- contravariant metric tensor of undeformed body

Cumn - covariant metric tensor of middle surface of undeformed
shell

(L m n  - contravariant metric tensor of middle surface of
undeformed shell

.I C? & - covariant base vectors of deformed body

S, & 3  - contravariant base vectors of deformed body

- covariant base vectors of deformed middle surface of
shpll
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, 2 - contravariant base vectors of deformed middle surface

of shell

P - unit normal vector to deformed middle surface

R1 ,jR - principal radii of curvature of middle surface of
undeformed shell

b1 I b12 b2 2  - second fundamental quadratic covariant tensor of
undeformed middle surface of shell

b:, b2, b2, b2 - second fundamental quadratic mixed tensor of undeformed
middle surface of shell

yrmn, rn, Imn - strain tensors

C.mn i na - stress tensors

ROA - stress resultant tensor of shell

mOC - moment resultant tensor of shell

1- transverse shear resultant tensor of shell

NOC,4 - physical components of force resultants tensors referred
to V "'coordinate system (units of force per unit
length)

mot's - physical components of moment resultants tensors VJ
coordinate system (units of force-length per unit length)

Q - physical components of transverse shear tensor FI, 2 co-
ordinate system (units of force per unit length)

T I a 3
t (I, L3 unit base vectors associated with 3
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Ed - covariant permutation surface tensor

- contravariant permutation surface tensor

NJ) NI.6 - force-resultants referred to p, * coordinate system
(units of force per unit length)

M., Mr , M1.9 - moment-resultants referred to Pi,D coordinate system
(units of force-length per unit length)

Qr,) QG - transverse shear resultant referred to r, O coordinate
system (units of force per unit length)

- focal length of parabola

, ; ' - powers of f, the focal length

U.Lr u.W - displacement tensors of middle surface

U u0. - rotation tensors of middle surface

"r - displacement of middle surface along C (units of
length)

u - displacement of middle surface along tangent to meridian
(units of length)

WO - displacement of middle surface along tangent to latitude
(units of length)

- strain tensor of middle surface

kaig - strain-curvature tensor of middle surface
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Ell - extensional strain along meridian (dimensionless)

CO - oxtensional strain along latitude (dimensionless)

Ere - shear strain (dimensionjess)

E 0 - extensional strain of middle surface along meridian
(dimensionless)

- extensional strain of middle surface along latitude
(dimensionless)

E - shear strain of middle surface (dimensionless)

Kr - extensional strain-curvature of middle surface along
meridian (units of (length) - ' )

Ke - extensional strain-curvature of middle surface along
latitude ( units (length) -1 )

K re - shear strain-curvature of middle surface (units of
(length)-1 )

h - thickness of undeformed shell (units of length)

- Youngs modulus (units of force per unit area)

AL - shear modulus (units of force per unit area)

V - Poissons ratio (dimensionless)

?00 - weight-density (units of force per unit volume)
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V- powers of 1 , Poissons ratio

t* - coordinate normal to middle surface of deformed shell

h* - thickness of deformed shell (units of length)

- force-resultant vectors (units of force per unit length)

l ,L - moment-resultant vectors (units of force-length per

unit length)

F' F - tensor components of body force vector

- body force vector (units of force per unit area)

e f 0 ' - physical components of body force vector (units of
force per unit area)

NY, Ny, NxV - force-resultants referred to cartesian parameters
(units of force per unit length)

X M M - moment resultants referred to cartesian parameters
, My ,(units of force-length per unit length)

Qx Q - transverse shear resultant referred to cartesian

parameters (units of force per unit length)

- bounding latitudes of paraboloidal shell

C) - signifies quantity under bar is a vector

1o0 - Im  - vertical slash before subscript signifies covariant
differentiation with respect to metric of deformed body
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Sor - comma before subscript signifies covariant differen-
tiation with respect to metric of undeformed body

{ - Christoffel symbols of second kind of undeformed body

I o - Christoffel symbols of second kind of the middle surface14 }of undeformed body

M- Christoffel symbols of second kind of deformed bodyAPf

ct - Christoffel symbols of second kind of the middle surface

| ; of deformed body

0- dot between two vectors signifies scalar product

x - cross between two vectors signifies vector product

".(f IS - second fundamental tensors of deformed middle surface

b bo - second fundamental tensors of undeformed middle surface

vii



I Introduction

The quest for more and more precise radars in the ultra-

high frequency regime has imposed very stringent requirements on the

structural behavior of large antennae. Thus, the permissible devia-

tions for an antenna surface which is to operate at 10,000 m.c. from

a true paraboloidal surface of revolution is now felt to be 1/16 of

the wavelength, which is 3/16 of a centimeter or .074 inches. Such

a miniscule tolerance on the distortion of a structure which is a

hundred feet or more in overall size, and furthermore, which is to

assume different orientations with respect to the axis of gravity,

requires an extremely high degree of sophistication in analysis,

design, and construction.

The usual structures such as bridges, buildings, or even

flight vehicles are designed mainly by strength considerations, al-

though flight vehicles must also have a certain minimum stiffness in

order to avoid aeroelastic difficulties. Machine tools are required

to possess great stiffness, but machine tools are generally compact

and weight limitations are practically non-existent. On the other

hand, the primary design requirement of a high performance antenna

is that the reflecting surface remain paraboloidal and, in the case

of an antenna which is housed in a radome, strength considerations

play a minor role in the design. Thus, the antenna must have great

structural stiffness but since the main loads are its own dead

weight, the structural stiffness must be accompanied by minimum

weight, i.e., the antenna must possess a large ratio of structural

stiffness to weight.

The basic structural components of the antennas'e para-

boloidal surface panels which, when joined together, form a surface
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of r 'volution. Such a structural configuration is generally called

a "shell" although "surface structure" may be more appropriate. Our

objective in this report is to treat in an exhaustive fashion the

distortions and stresses in paraboloidal surface structures. We

must, in view of the aforementioned stringent tolerances on the main-

tenance of the proper shape, investigate effects which generally

can be ignored in the more common-place structural theory. The

approach, in this report, will be to first lay the foundat.on for

the general behavior of a paraboloidal shell. Then the equations

will be specialized and simplified to the various forms of shell

behavior which are classified as membrane behavior, etc. This

report, which in a certain sense will never be completed, will

be issued in sections since it is felt the best interests of the

Lincoln Laboratory will be served in this manner rather than to

delay publication until, say, 90% is completed.

In view of our desire to lay a general foundation, and to

treat in an exhaustive fashion the behavior of paraboloidal surface

structures, the authors feel that the pertinent equations and the

geometry of the deformed structure can best be handled by the tensor

calculus. In the more simple aspects such as membrane behavior

with orthogonal shell coordinates, the advantages of the tensor

calculus are minor and its use may even seem like the use of the

theory of relativity to prove that a pitched baseball can curve.

However, the power of the tensor calculus will become apparent as

the more complex forms of surface structure behavior are considered.
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2.1 GBEMETRY OF THE MIDDLE SURFACE, POLAR PARAMETERS

The middle surface of the paraboloidal shell of revolution

is a surface which is generated by revolving the parabola

3 (01)3
44 2.1.1

about the j3 axis (see figure 2;1.1)

y3

r

1 - Ty 3y 11y? PLANE

Figure 2.1.1

In this figure, r is the radius of revolution to a point p on the

middle surface and f is the focal length of the parabola.

We will use ;. to denote the position vector from the

origin of the rectangular cartesian axes to a point p on the surface

of revolution (see figure 2.1.2). In terms of its rectangular components,
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0F is written as

F~rQ)u cos e~ + rS in Aas+ 3

2.1.2

where the .Oh are the unit vectors associated with the rectangular

cartesian coordinates 4" and 8 is the angular coordinate measured

in the 9 plane from the 91 axis.
y 3

PARABOLOID OF
REVOLUTION

Figure 2.1.24
yi

It is convenient at this stage to introduce a non-

dimensional coordinate in place of r. Let
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2.1.3

It should be recognized that is the slope i29 of the paraboloid
dr

and also that if 4 is the angle to the tangent (see figure 2.1.3) then

7 2.1Ab

C06 ) 2.1.5

t) 2.1.6

ion 1 o ir 3 r} " 2.1.7

In this notation, the base vectors of the middle surface

(see figure 2.1.3) are

2.4 f CO 2 1+ sin 4121.
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&2.f 5 i n 0-s G~ 1 CosOI 2 7. 2.1.9

y 
Y
3

02 dy
3

4b Y dr 40.Y

PLANE

(b)

y 3

(c)

Figure 2.1.3

We summarize without detail ed comment the pertinent

geometrical parameters of the paraboloid.

The fundamental metric tensor

%, -0 . . 2.J .10
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has the components

S4 2,) [1 "+ (Y )2. 0 1

[(Leto] a 4 4 Z,(~2. 04 ( )) 2.1.11

and the determinant 1 L., of the matrix[ol..\,8 J is

o.. - 164"(r [+(f2 2.1.12

Since 0"12. 0 the coordinate curves are orthogonal.

The unit normal 7 Al to the surface

F. 2.1.13

has the components

a- - C06 sin OI-zz.+ ..
f tYI2.1.1a

or in an alternative form,

hea -Sin# Co59 -sin#Sin O.Z a, t C 1.4 2.1.lb
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Note that the unit normal is directed inwardly (see figure 2.1.3).

We will need the derivatives of the base vectors.

I } 2.1.15

If -qi 7 t C -06O,1211

A 1. - Cos n *IL . 2...17

The second fundamental tensor of the paraboloidal

surface,

h 2l2.1.18

has the components

o 2.1.19a
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0

Since both (LI. and 6,, are zero, the coordinate curves y and 0 are

the lines of curvature of the paraboloidal surface of revolution.

The contravariant metric tensor which is defined by

0 0L 0).' 2.1.20

has the components

a!'= I 2.1.2]

0 o 2.1.22

a a - = 2.1.23

The results shown as and are a consequence of the
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orthogonality of the coordinate curves.

We will also have occasion to use the contravariant base

vectors. These are

-1 O.~ ~2.1.24

0CL I( 0 ut-Q 2.1.25

The normal curvatures in the directions of the co-

ordinate curves are also the principal normal curvatures because the

coordinates are the lines of curvature. We will use R, and RI to

denote the principal radii of curvature.

b,i

3-" 'j-- a ,(.* . 2.1.27

With reference to the principal radii of curvature, we
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can make the geometrical constructions shown in figure 2.1.b.

3 3
y y

A r2Yds

Figure 2.l.h

We observe that the altitude of the triangle ABP is

AB T A cot (24 y) 2+ ~ 2.1.28

and the hypotenuse then can be expressed as

B P [(Af) + (A6) 2 - V 2.1.29

which means that the length Bf is equal to the normal radius of

curvature in the & direction, i.e.,
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BP = RI - 2.1.30

Additionally, the arc length ds1 , along the Y coordinate

direction is given by

d 1  Ay ' [dr 2.1.31

and therefore, R , the radius of curvature is also

J61 a2.1.32

We also observe that the arc length, As, , can be re-

lated to 4 and the normal radius of curvature R,

ds 1  RI d 2.1.33

or

RI - 2.1.3L

Next we will list the Christoffel symbols of the second

kind for the paraboloidal surface. These are given by 1
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{ } & " 2.1.35

where the subscript zero on the Christoffel symbols refers to the

undeformed middle surface.

For the present case, the non-zero Christoffel symbols

are as follows:

jx 2.2.36

o

1- z1 (- * 2.1.38

The following ones are identically zero

2.1.39
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Ii 2.l..l

To complete the picture of the middle surface we require

the derivatives of the normal vector and the base vectors. The deriva-

tives of the normal vector are the Weingarten formulae,

S a -a ,3 2.1..42

and for the paraboloidal surface these become

~~2 R2.[I +M )2]'/ 1

-2 = -
R-- (I + 2 - 2.1.4

The derivatives of the base vectors are given by the

Gauss formulae

22 + a 2.1.45
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and for the paraboloidal surface these become

- _ _ _ _ -2 f -)

2.3 .h8
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2.2 GEOMETRY OF THE MIDDLE SURFACEs CARTESIAN PARAMETERS

In section 2.1, the geometry of the middle surface has

been described by means of polar parameters, r and 9 . These may

even be considered as a "natural" choice since the polar parameters

lead to coordinate curves which are also the lines of curvature. There

is another choice, which at first glance seems highly "un-natural", which

is motivated by the symmetries of the loading experienced by a parabolic

antenna. If the predominant loading is attributed to gravity, then it

is clear there exists an axis of symmetry and an axis of anti-symmetry.

y 2

22

GRAVITY 2

Figure 2.2.1 1
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There is shown in figure 2.2.1 a parabolic reflector with its focal

axis inclined at an angle t to the gravity axis. The behavior of the

antenna shell structure due to the gravity loading is seen to be

symmetric with respect to axis 2-2 and anti-symmetric with respect to

axis 1-1.

The so-called "natural" coordinates r and 9, which

are best suited for problems with rotational symmetry,may not be able

to conveniently take advantage of the symmetries of construction which

may be motivated by gravity loading. For example, it may be advan-

tageous to reinforce the shell with members which are parallel to the

2-2 axis. Accordingly, it is felt that the use of oartesian parameters

may be fruitful. These are defined as follows (cf. equation 2.1.1 and

figure 2.2.2):

2.4= .X 2.2.1

f ,* 2.2.2

3 [()+ ()2]
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It should be observed that x and y are non-dimensional parameters on the

surface.

ye

Y CONSTANT

I

y
3

PLANE

Figure 2.2.2

The position vector to points on the middle surface is

now written as

c (X,~ 14 A4A. t 2. +A. 2.24
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We summarize without comment the base vectors, first fundamental tensor,

second fundamental tensor, and Christoffel symbols of the second kind.

0 1 1 + -f x -L3 2.2.5

I If .It 2-f4. 3  2.2.6

O.,i- 4ft ( 1+,K') , 2.2.7

o. X4ax441 1" ) 2.2.8

•---4,a . ,- I + 2.2.9]
4 4 + Z) 2.2.1

..£ I "(+Z.) 3] 2.2.11

lliaS J ' 2-.2.12

2.2.14

I VtK1 4" $

2.2.2.1

4f + x+ 2.215
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1( 42 1) 2.2.M

CL = 4+ xt t ) 2.2.17

4 , 2.2.19

-. K 2.2.)

- - 4X 2.2.29

0+ 9

t - , 2.2.20
C I lk '  7.

zI 0 - f, b ' 2.2.21

= 0 0 2.2.22 '
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I+ (2.2.23

' , f 1 + Z 2 + I zj" .7 2 .2 .2 3

1 24 ! 2.] 34 2.2.24

6 .4 12.2.25

f*+(x)

2 2.--0. 2.2.26

+44
c! z . ,i,. f x 4l

hx .+ LjX .1t it z+j z,  2.2.29

-";2 .1-~ '  rz1.tl] 0" .2.0
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~'1 ± *2.*2.31.

Yu x_ l 0,+'A2x4'

It should be observed that the x, y parameters are

non-orthogonal ( a12 , 0) but are conjugate (b12 a 0).

There is one other geometrical property of the paraboloid

which is of interest. The curve formed by the intersection of the

paraboloid and the plane I . is the same as the generating parabola

(see figure 2.2.3). This can be demonstrated

Y~4K

.J _'-J 4<

. I . J

- 0.

Figure 2.2.3
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as follows:

The generating parabola (see equation 2.1.1) is
3 (1-) 1-

0 - 2.2.32
4f

At SQ

r 22.2.33

and hence the intersection of the paraboloid and the plane 9 0 has

the representation

3 0L: 2.2. 34

The slope of the curve is

cI{3 (o,1 2)

2.2.35

At i'.L,

):... (j,) 2 + ( 1.))2 2.2.36

and hence the intersection of the paraboloid and the plane I1 is

represented by

2.21



0 2.2.37

The apex of this curve is displaced from the plane by an amount

0) 2.2.38

and hence if we use the tangent plane at the apex as a reference, the

curve is represented by the formula

0) 2.2.39

This is the same as formula 2.2.34. Furthermore the slope of the curve

J43 (1, ) q3

S2'+ 2.2.40

is the same as that given by equation 2.2.35. Thus, we have shown that

the curve of the surface along IL is precisely the generating

parabola displaced by an amount i( L )
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2.3 GEOMETRY OF THE SHELL: POLAR PARAMETERS

The location of a point within the shell structure will

be specified by three parameters, two of which lie on the middle surface

while the third is oriented along the normal to the middle surface.

These parameters are denoted by 9 , ,and ' respectively and are shown

in figure 2.3.1.
" " - .. SURFACE =CONSTANT

SY

1 /,.>1 MIDDLE

/- SURFACE )(=CONSTANT

-.- - I ,

' 3

y2

SFigure 2.3.1
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We see from figure 2.3.1 that point o is on the middle surface and that

p which is not on the middle surface has the position vector

al t '(Y19) +~f 2.3.1

At point p, the base vectors are

3 2.3.2

x 2.3.3
13 n 2- (, It ..

where R1, 91 are the principal radii of curvature associated with the

middle surface (see equations 2.1.26 and 2.1.27) of the paraboloid, and

8' are the base vectors of the middle surface, (see equations 2.1.8

and ?.1.9).

The non-zero components of the covariant fundamental
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tensor are

R , 2f[1+(Y)Y]j[ [

2.3.5

2.3.6

13 3 2.3.7

and the determinant g has the value

R R2'. i,, 1(

2.3.8

We also list for future use the associated contravariant

quantities in terms of the middle surface parameters.

_R 1 RI

T 2.3.10
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2.3.11

33 . 2.3.1h

To complete the picture, the Christoffel symbols of the

second kind are tabulated for the space occupied by the shell structure.

2.3.15

I~It
{Z 2.3.16

2.3.17
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' R{It1,m I

2.3.18

2.3.19

3 o, =  f)'[i+(y)'
2.3.20

21 4( ) , ' ,,, (1)
2.3.21

{2z}"{,')-{I}"Z - {1133} 3- 0

2.3.22
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2.40 GOMETRY OF THE SHELL: CARTESIAN PARAMETERS

We will proceed as in section 2.3 which describes the

geometry of the shell in terms of polar parameters. The position vector

to a point with coordinates x, y, t is represented by

F (X, yj ,)l=F o (x Iy) + t 1i. 2

At point p, the base vectors are

9f a X = y - 2.4.2ax 2f[,+x2+y2]3/2) (2 (4+x+y2]3/) 02,

9 = -y = I-8X 2.4.3
ay4 2f(,+x2+y2)3/2)(+2+y)/

.!r= n.l*4.

The remaining geometrical properties can be calculated

but will not be tabulated since it is evident the non-orthogonal nature

of the x, y coordinates will lead to rather unwieldly expressions.
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III ANALYSIS OF DEFORMATION

3.1 THE STRAIN TENSOR

The square of the line-element, ds, in the undeformed

structure of the shell will be written as

( ds)a = mn dXm dAn 3.1.1

where gmn is the fundamental metric covariant tensor of the space

occupied by .the undeformed structure and xI , x2, x3 are the curvilinear

coordinates which locate a specific point in the undeformed structure.

We will also use x , x , x , as parameters to locate points in the de-

formed structure and hence the square of the line-element, dS, in the

deformed structure will be written as

(dS) 2  Gn dxmdn 3.1.2

where G is the fundamental metric covariant tensor of the deformedmn

structure.
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The state of strain is characterized by the difference of

the square of the line-elements and will be written as

(d)2(s) 2Y 1~1 dxm d n 3.1.3

where it can be observed from an examination of equations 3.1.1 and

3.1.2 that

Ymn"'. (Gmn " 9mn)

The second order covariant tensor, n defined by

equation 3.1.3 is the strain tensor. Since equation 3.1.3 is written

in terms of the Lagrangian coordinates, i.e., the coordinates of the

undeformed body, the strain tensor, imn' is sometimes referred to as

the Lagrangian strain tensor.

The metric tensor, G., of the deformed structure is re-

lated to the metric tensor of the undeformed structure displacement

vector, v
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Let r be the position vector to a point, p, in the

undeformed body and R be the position vector to P, the point which p

occupies after deformation. Then

F + V 3.1.5

and the base vectors of the deformed structure are given by

M Ina R . _jr + Ly av3.1.6
ax' 4f' Ix

It is easily verified that the components of the strain

tensor can be calculated from the vector equation

9 m  €xm - • 3.1.7
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3.2 THE COMPONENTS OF LARGE STRAIN

In this section we will specialize the results of the

preceding section to a coordinate system which is more suited to the

theory of shells than are the general curvilinear coordinates xm . We

will designate these to be 9 , E 2, and r, at this stage of the

analysis. In the later sections . and 2 will take on the roles of Z

and 0 in the case of the polar parameters (see section 2.4).

The displacement vector, V , will be specified in terms

of components aligned with respect to the base vectors, 0, , of the

undeformed middle surface and the normal, n , to the undeformed middle

surface. We express this as

~~~ r~ +)v(c,~ 4 .V3(I2,)f 3.2.1

The six components of the covariant strain tensor in the shell coordinates

(see equation 3.1.7) are determined by the following vector equations:
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C gt - 3.2.2

+ +

rot . 3  Sjg 2 a.O 3.2.3

n *. TT+T 7- Y ..

Let us write out in explicit form the six components of the strain

tensor if the lines of curvature are utilized as the coordinates on

the middle surface of the undeformed shell.

- I V 3 I

ru t-I VR1 -
13) ( 1  -t-/

.3.2.5

2 1 V" ,11 t R 71 2 2, RI
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= , I (v" )(I- ,)(, +(v )(I - 2

+ ( V i 2  ) (2 + \Vi ) V 3.L.1

,ZI) V3) a1 +_-)(V11j)RI)

+ \)CI + ,1

R 2V + -R)3 .2 .8
S 2 V 3  fM I I+ ( 6VJ (VJ2 )11o2 j) ( 'hJ )

I v I 22 v2 L I )

3.2.9

rV3  I j ' 0V1  2V 2  v 2  / ivZ )

+ (V 22 -' V

3.2.10

It should be observed that none of the usual restrictions

of smallness, thinness and linearity have as yet been applied.
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3.3 THE COMPONENTS OF INFINITESIMAL STRAIN FOR THIN SHELLS

The thinness of the shell is specified by the ratio of

its thickness to the smallest radius of curvature of its middle surface.

If we let h be the thickness of the shell, then "thinness" can be ex-

pressed as

<< - - 3.3.1

Hence, the term (i- ~ ), which appears in each of the expressions

derived in the previous section, will be replaced by 1 wherever it

appears.

The infinitesimal nature of the strains means that the

elongations

Eh 11=I¢e ft -1 (no Sum on n) 3.3.2
9nn

and the changes in angles between directions jm and in

Sin 2mn = n

gm (n .Em)( +En) 3.3.3

3.7



are not only small but are infinitesimal. If the strains are small, then

n 'inn ' 3.3.4

~ ~2n n5in 2y m nnn 3.3.5

The added restriction to infinitesimal strain enables us to neglect the

non-linear terms in the strain-displacement relations. In addition to

these simplifications, let us introduce the assumption that points lying

along the normal to the undeformed shell remain on a straight line in

the deformed shell. This is expressed as

~ C)=U5(f~ 3 33.6

A companion assumption is one which states that V 3 the

displacement normal to the surface, is a function only of ! and 2 ,

i.e.,.

11I2 2)
.3.3.7
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We will use Cnm to denote the infinitesimal strain

tensor, i.e.,

£nm 'm 3.3.8

The strain-displacement relations for the case of a thin

shell and infinitesimal strain are as follows:

-(u, -b'W) a,+ (u 2 - b2w) CI, 2 + (6u'f 0 1  3.3.9

X22'(u z-bw)a 2 +(v"-b w) +a 2.13.310

f2

'2 2 2

+ ( { ' wC)a2 +U22 -b Uba~~~(' 1 W) ~bJ 3.3.22.

- tI22 {u I +W 017+(4)ul O + *33.1

3.9



There are five generalized displacements in equations 3.3.9 to 3.3.13.

These are U' Ii W f 6, and W2. The first three are directly pro-

portional to displacements of the middle surface whereas the last two are

proportional to the angle of rotation which the normal to the deformed

surface undergoes during deformation. These latter two (w' and W 2) are

a first approximation to the effect of transverse shearing deformations.

In a large majority of problems, the effects of transverse

shearing deformations are negligible and we can place a further restric-

tion on the distortions assuming that

2I3 Os 3.3.14

17- 0-. 3.3.15

This permits us to eliminate W, and W? since equations 3.3.12 and 3.3.13

can now be solved to yield

4 1 =-bl u - b21 U- 2 W3.16

3.10



Wz =bt4ub 2 z uz w

= - U 3.3.17

It is observed that the strain-displacement relations

consist of a term which represents the stretching of the middle surface

and an additional term due to bending of the middle surface. Hence we

write

, ,- ( ',2>. ( 1, Z) 3.3.18

where it can be shown that

S= ( , 2- u,3 +b4 W 3.3.19

I ( oj,/ C+ J, .3.3.20

We will refer to X4 as the strain tensor of the middle surface and to

A as the strain-curvature tensor of the middle surface.
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3.4 STRAIN-DISPLACEMENT RELATIONS. POLAR PARAMETERS

In this section we will apply the formulae of section 3.3

to the paraboloid as described by the polar parameters, r and 6 , which

are also the lines of curvature. The results in terms of the tensor

components are as follows:

01 2, 1+ ) -W V 3.4.1

'+ = J'-" +()2 ' UV 3.4.2

o1 z _e ar (i3-4

z = - I00-- "t

+1 3.15

3.12



fd T W 3.1j.6

Ul w3.4.7

2f( a) 2  2 w

Ofjjjj U (I0 * 3.4.8

Let us introduce at this stage the physical components of the strain

tensors into the strain-displacement relations. Also, we will switch

to the r, notation for the components of strain and displacements.

We note that

Cr 6 EIf 3.A.9

z22
1E1 E22 - Q22 . 3.4.10

Ere 47z t 2  3.4.11

3.13



We will also at this stage separate the strain into two

portions, one of which is the strain of the middle surface and the other

which is proportional to . To this purpose we write

015r er + r1 3.4~.12

= + CK3.4t.13

Gre = ErG + KrO 3.4-14

Before we calculate and K let us introduce the

physical components of e and * These are given for the case of the

orthogonal coordinates by

Ur " U' - u1 , 3.4.15

S = .U V 2.U 3.4.16

3.4



ar =  W I 3.4 17

Oem = ' L2 O'2 3.4.18

0 0 o
where Ur, UO,(4r and WeG denote the physical components of displacement

and rotation.

The pertinent strain-displacement relations for the

paraboloidal shell described by polar parameters are as follows:

o 1 _____ w
61 3.4.19

o t u o u,°  w

I au * ur. 0 u

Zfve u Q, 2f i7 Ij 2f' 3.4.2O

0 0
0 uG UO aur

Ere - -Out + r 3.4.21
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0 __ _ _ _ 0 ___Oo~r  r -_
=  2f(*g2]3/2 2f v(i yr ' 3.h.22

9_r 1
K r ?f3.4.24

= 0

K r Vi _+ z " fV- 2fi 1 e 3.1.26

3.5 STRAIN-DISPLACEMENT RELATIONS: CARTESIAN PARAMETERS

We will summarize in this section the strain-displacement

relations for the paraboloid as described by the Cartesian parameters

x and y.

3
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bx~ 1+ ()(2 +(y) 2)4f ax I +)2) ) 4f-~~ A2 xy

ZF w

"2+ ts()±Y)2 4-f 2-.[+ (y- (,-f)u I.+)" ) 4f 2!y

2f w

bx + 1.-.(X)yZ9 +)Z 4xy

-2b 12 W

ay2+y)2 +tX)4 ( ) 4 (Y) 3.5.5

Uj'+ x W2 7:z) 4f 2 3.'4-?2 " W



[ 1+(y)2] uU zy u

(X) 1f [ -(x) 1]i1- 3.5.7

_ (Y)_ _W xy Yw
4f= [.l( )Z+y; 4-f2 [i+(x)+(y) 2 y

+ (_)_ _ Z]_U_2  x y u '
z~ ~ ~ = - z t,(t (y) J312 -X 7 +t x . (y) 213/2

I + K)2 4w- y W3.5.8
_ f+(K) 2  

____ __ y______ w

4f 2 [t + ) +(y) 2 ]  y 4f[C1+(X) 2 4-(y)Zj ax

In this case of the rectangular parameters, the physical

components of the displacements will be taken with respect to the

covariant base vectors, OC • Thus we will use

0 -
U2 -

2  f'T~ ~ 3.5.0

W 4ra 01 2f /3.5.11
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2 ~ L 2fi7Tw 35.12
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IV ANALYSIS OF STRESSES

4.I THE STRESS TENSOR

The stress tensor in three-dimensional space is defined on

the basis of the equilibrium of a tetrahedron which is carved out of the

deformed body (see figure h.1.1).
P 3

/4

~2dn2 
-~P 2P-- / = [unit normal to\

Figure 4.1.1

In the limit, three deges of the tetrahedron can be considered to be

formed by the vectors ZidxI ,  2 dx 2  and 3 dx 3  where the U are

the base vectors of the deformed body. The fourth face of the tetra-

hedron is located by an outwardly directed unit normal vector, ,

which can be expressed as

/ - JA M 6mb Ml.

4.1



The action of the rest of the body on the tetrahedron is represented by

the stress vectors shown in figure h.1.2:

- P3

P --- P 2

P4
-2

0-(300-

Figure 4.1.2

In this figure we have the following:

- stress vector (force per unit area) acting on face dA

-m - stress vector (force per unit area) acting on dAm

d A - one-half of the area of face P1P2P3

dAl - one-half of the area of face P PP coordinate surface)

2 3 ri - constant

d A 2  - one-half of the area of face P PIP (coordinate surface

3 f 2-- constant

(coordinate surface)
dA 3  - one half of the area of face P PIP2 1 . constant

The equilibrium of the tetrahedron requires

&dA-& m dAm O h.l.2

It.2



and since

dAm =  m dA (No Sum) 4.1.3

the equilibrium equation becomes

nM M.1.4

This last relation forms the basis on which the stress

tensor is defined. We write

3

&M AM= z Tm 6  Gn (No Sum onm) 4.1.5
n*

It can be shown that the stress tensor is symmetric:

Tmn = Tnm 4.1.6

4.2 THE FORCE AND MOMENT RESULTANTS

Generally, a shell structure is one in which dimensions

in the two coordinate directions V and 2 are large compared to the

h.3



dimension in direction ' which is normal to 1V and t2 . Additionally,

the bounding surfaces - re usually acted upon by loads of a

magnitude which cause the surface stresses at the bounding surfact to

be negligibly small in comparison to the internal stresses. It thus

becomes more convenient to work with stress resultants which are the

stress effects integrated across the thickness of the shell. This

procedure, it may be recalled, is one which is used in the theory of

beams and plates.

The stress resultants are defined relative to a shell

volume element which extends over the total thickness of the shell (see

figure 4.2.1).
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2

SURFACE CONSTANT

SURFACE 0. CONSTANT

Figure 4.2.1

There are shown in figure 4.2.1 the stress vectors a'I and 2 which

act on elements of area -[G7, d E'd Cand G d Vd - respectively

(see figure h.2.2).

Sd 1

-/G2 d2-- W2

t[I"  I
Figure 4 .2.2
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The stress vectors, which are a function of f* . are replaced by

stress resultants. Thus, figure 4.2.1 which shows the stress vectors

and the shell volume element is replaced by figure 4.2.3 which shows

the middle surface of the volume element and the stress resultants.

DEFORMED MIDDLE SURFACE

~2 2

Fn

Figure 4.2.3

There are two kinds of stress resultants: and 12

which will be called force resultants; and RI and m2 which are called

moment resultants. It will be shown that the moment resultants are

surface veotors, i.e., they lie in the tangent plane at point p. The

force resultants, however, are space vectors.

The definitions for the stress resultants are in reality

equations which characterize the statical equivalence of the stress

4.6



resultants to the stress vectors:

P A. d 2  j &-' d4,2.1

h*
2

- d d E' 2* 4.2.3

It is useful at this stage to introduce the stress tensor by means of the

equations (see equation 4.1.5),

---- - I li;g + T'7 62+ T'3 4.2.5

M T 24.2.6

We will define the force resultant tensor and the moment

h .7



resultant tensor by means of the equations

z fi At ., + 2 A, + 9{ 4, .2.7

17 V-A 2,- m" i 2 2 t q,2 N

A Ml 2.2.9

jjjt-~/K VK n't  2 _ A~r rn2 AZ7

F 2 I 2, 2 m22 I42 4.2.1o

It can be shown that the quantities 2 and mn/ 3  are

surface tensors of the contravariant type.

If equations 4.2.5 and 4.2.6 are substituted into

equations L.2.1 to 4.2.4 and the results compared with equation 4.2.7

to 4.2.10, there will emerge the following relations for the stress and

moment resultant tensors:
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hi
r

11.1

2

h*

Il/" "f'r J T - 1 * f2 + T' 1 -t * Bz]d

h A 4.2.12

2T 3

4.49.2.13

H*

VT ' T 3 d

~L-g;V A 4.2.16

=fh A 4.2.17

-TI

4.9



h

Fr F A e) 2 )]rd .2.18

h*

I - 11 t d1 h.2.19
A 2

M.1 22T't B * f*2 *

Note that the equations 4.2.11 to h.2.16, which may be

termed the exact definitions, define tensors which are not symmetric.

If the deformed shape of the shell is assumed to be such

that the radius of curvature of the deformed middle surface is still

large in comparison to the thickness, h , then the terms B, will

be small in comparison to unity and hence can be neglected in equations

4.2.11 to b.2.20. Additionally, there will be a negligible difference

between the length of h and h for the case of small strain. With these I
restrictions, the components of the force-resultant and moment resultant

4.10



tensore assume the simpler forms shown below:

ili-J T' "i t 4.2.21

,h ,4.2.22

4.2.23

13 Jd 
4.2.24

h
S d t 4.2.25

2

Mf 11  r"C 7- 9 4.2.26

hm12 'zm T' 4.2.27



J T 2 d'. bh.2.28
i

It should be observed that the tensors ml and 0

are symmetrical tensors for a thin shell.

b.3 THE EQUATIONS OF EQUILIBRIUM

It will be found convenient to introduce the quasi-force

-cc
vectors L defined by setting

f dt' 2 2 v'dd &. ) 4.31

4.3.2

-1 -2.
The quantities Ld andL8' 1 have the dimensions of a force, and by

introducing equations L.2.7 and 4.2.8, it is seen that

11 .12



Similarly, we introduce the quasi-moment vectors M by

setting

i ld ' V AV -2, d t2, 4.3.4

7A d t' Fn 2z 'VA d & 4.3.5

By substituting equations 4.2.9 and 4.2.10, there results

R *-VA Ec m' 4.3.6

where 9 is the covariant permutation surface tensor.

The force equilibrium of the shell element of volume can

be obtained by examining figure 4.3.1, which sketches the force vectors

which are acting at the deformed middle surface.
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-2 -2 C'~['1+ LL dt'ldf

+2- dC 2 dC

r2df' C€

Figure 4.3.1

The vector equation of equilibrium is simply

\ + + d 4 .3.7

whereJ JCtdi a body force vector with components given by

NrA Wx A + F3 F44.3.8

It is easily demonstrated that equation h.3.7 has the

following form if the stress resultant tensor is introduced by means

of equation 14.3-3.
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4.3.9

The vertical slash before a subscript indicates surface covariant

differentiation in the metric of the deformed middle surface.

The moment equilibrium of the shell element of volume

requires the examination of figure h.3.2, which sketches the moment

vectors acting on the deformed middle surface, and also figure b.3.1.

-2 1 -
2

( 2 MdC + 2 dd' dd2

P'df2 FA'dC2 + kRM'df2d

, I

w.2df1

Figure h.3.2
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The moments depicted in figure b.3.2 are moments of the

stresses about the &I and t2 axes. In addition, there are moments

about the t axis caused by the force vectors shown in figure L.3.1.

By properly summing up all of these moments, the following vector equation

of moment equilibrium is obtained:

( Vc XL) d 9, dh.3.1o

There are terms of higher order such as that contributed by the body

force Fd d&2 which have been neglected.

By introducing equation h.3.6, the moment equilibrium

equation becomes

-V

The scalar equations of force equilibrium in the A ,

-2-
A and N directions are obtained by forming the scalar product

of equation 4.3.9 with the contravariant base vectors A and N

4.16



respectively:

- + Fu=0,7431

S+ Z$O B,,e + F - % . 4.3.13

The scalar equations of moment equilibrium in the A, ,

A 2  directions are obtained by forming the scalar product of equation

4.3.11 with the covariant base vectors A1  , and A2

(M t-'f- 0)o 4i.3.14

It can be shown that the scalar equation of moment

equilibrium about the N direction,

WB r Ct 0- ' ) +1-0 4.3.15

is identically satisfied because the strain tensor, T m n, is symmetric.
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4.4 THE EQUILIBRIUM EQUATIONS FOR INFINITESIMAL STRAINS

If the strains are infinitesimal, then insofar as the

stresses are concerned, the geometry of the deformed shell is indis-

tinguishable from the geometry of the undeformed shell, Thus, the first

and second fundamental tensors of the deformed middle surface appearing

in the equilibrium equations of section h.3 can be replaced by the

similar tensors of the undeformed middle surface. The equations of

equilibrium under these circumstances will be written as follows:

X, bo F o, 4.4.1

1P + - b,4 + F 3  0 ,.2

go"

m, -~ € '= o. h.

The comma now signifies surface corvariant differentiation with respect

to the metric tensor of the undeformed middle surface.
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4.4.1 POLAR PARAMETERS

The equations 44.1, 4..2, and b.4.3 assume the following

forms if the polar parameters 6 and e of section 2.1 are used.

aeG 1 +() f[+()1/4l",q t [, +- '._L . zf[,. ,]2 = i&4,..3~
W2 + 2 + + + F 2. 01 4.4.1.2

aq I ' r 79 +- +2f ,, IFr + (4)+] 1

Jq2 am 2  +___ f2j qJ 22 3 .4.

4-+ - i +1 2f ,-(rF - 01 o, z4.1.3

.r m [ 1T 1 ]m '  o.

M+- O + 2. ,+TL - M o. 0.1.

The physical components of the force and moment resultant

tensors are, since the polar parameters are also the line of curvature,

given by
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Nr= N11  11 D.42[t+ (a)21 111j 14o4o1.6

N9~ N 12 21 0 2 2 = 4f2(1)2 122,

Nr- N 2- £N 2 1  
2  T4 2 .4.1.7

Nr = Njz = NZ,: 4, f,[, n] ' 2  .4.8.

Mr- Ml = Im" Off = 4f2[+(Z)2] m'" .4 -1..9

M e = M22 =  0-z22 = M.2f 22, )= 2n 22 ,  4.4.1.10

Mre = M11  M 21 4f [1+( (011/2, reh, 4.4.1.2fl
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Qe-Q2 = 02 q2 -= 2f Yq2 4.4.1.13

If the physical components are used, the equatiods of

equilibrium can be arranged into the following form:

_Nr Mrs J N-

4.4.1-15
+1y-T--" 'N +2Nr+N++

i .h.l.lS

' + ' + -'- + M-M'F (iZr O

air~~ *(rUz Nr + IN+0+2 X() ,0

4.4.1.16

,MMr -M 2

6+ + Mr-N9-f94+zrzO

144 .1.18

where the body foroe intensity vector (see equation 4.3.8) is given by
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Pr + Po + P  fl
S24...19

It should be observed that o and 0 are unit

vectors.

4.4.2 CARTESIAN PARAMETERS

The equations 4..1, lt.L.2, and 4..3 assume the following

forms if the cartesian parameters x and y of section 2.3 are used.

* Q '+2  3 4  II IX i Z 4 Y , 2 (o f 4 2 , fa,z3 
- , , F

+ X 2 f O F  F+ SO

'1 -,f4.4.2.1

J911 1 J 2  3 2f4  g22 lf4 (I 1 f4 It 90,2.cf 0 1-8JI± 2

4.4.2.3

..22



ml2  m 2 2  32f 4  22 +± i4 Xm21 16f 4  , =o' +- + ym - -a ym"
4.4.2.5'

It should be remembered that f is the focal length and hence f4 and

f 3  represent powers of f. The components of A/3 are detailed in

section 2.3 as is a.

The physical components of the force and moment resultant

tensors are given by

N x Q22 4.4.2.6

Nxy N 2  V a 4.h.2.7

Ny q~ " , ,1 -',4.4.2.9

Va, q, 4.4.2.9

L.23



. 2 4.4.2.10

Mx- m 4.4.2.11

MKY M 2 = m4.)4.2.12

Px =P, =V i F', 4..2. ,,

P y Pz 522 F 24421

pt --P3= F, 4.4.2.16

4, -h



The equations of equilibrium in terms of the physical

components of the force and moment resultants are listed below:

- [±x+ ____ a - f4  x N
0 J111 ay aO aI

a 3 +  a ,I  Qx+ py , .44.2.18

+ +[,++ zz' x o,+3MN I (of 4- 4f 21 "AY 22 j~ ' 4

-+ 1 Yx y + -- Nil

0±2 a1  1(.f

- + Qy alO. 4.4..21

11.25



.V THE STRESS-STRAIN RELATIONS

5.a GENERAL RELATIONS FOR ISOTROPIC MATERIALS

The stress-strain relations for an isotropic material

and general curvilinear coordinates are given by the tensor equation

Tm rni,{gm A + .mre 94 + __L_ 5 n 9 i 5.1.

where

E
" (t+) - Shear Modulus, 5.1.2

E - Young' s Modulus, 5.1.3

2' - Poisson' s Ratio. 5.1.h

In the case of a thin shell, the Kirchhoff assumption

leads to the vanishing of $33 and to the neglect of 10 3 . Also, the

assumption of negligible transverse shear strain voids the use of two of

the six stress-strain relations. All these factors in conjunction with the

special properties of the shell coordinate system reduces equation 5.1.1

5.1



to the following:

T dr ITI ' 5.1.5

where the elastic constantsX A 9r are given by

lp-rOR a- O + - e IT 5.1.6

If equation 5.1.5 is substituted into the definitions for

the force and moment resultants (see equations 5.2.21 - 5.2.28), there

will be obtained

1  mh (,' 3A r , 5.1.7
IT

Mn -- ,r 5.1.8

In these latter two equations, the strain tensor 1,T has been expressed

in terms of the strain tensor of the middle surface and the strain-

curvature of the middle surface (see equation 3.3.19). The stress-strain
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.relations in explicit form are listed as follows:

112...Eb..{QIZ f ~ 221i 5.1-10

12 2 a 2.j - J v) 12 C,110 221,* 011 2 2 10 + 022Cj22X. 1 }.1.1

t-2/1~iL +a 2 a'+t 9 12+uloi~±} 5..12

M2 = 12 a212 I12 ++21 L, Ito 2 21 4] 2 2)4 5.1.12

mi ph 12(- 2  It[ -

IZ a2 a102 a~ +22J 2 C, Z20l2l 01~~,12 2 IZ t12 L 21j C 22114 5.1.13

5.2 POLAR PARAMETRS

The polar paramieters, r and 19 , being orthogonal, yield

stress-strain relations which are much simplified. In tensor form these

5.3



are as follows:

1 ,, jh {"If i o 2f 2 o}-r 3'{- 61 +VQ10 22 ,2  5.2.1

Sh 11V It 2m , (-2/2 Clo, 0i o ti~

--- V- f -C1Q 1z5.2.2

-- Z 1 2 1, 5.2.3

m" E h,3.C, if aE11 z VC12 22 5.2.-h

M 1z G Ih (,V C11 022) jt 5.2.5;
12(1-V2) f 12 ,

M22 Eh3  {022 1 2+ 2kl52#2 0, )2

In these relations, the components of the contravariant metric tensor

are given by equations 2.1.21, 2.1.22, and 2.1.23. The stress-strain

relations, in the case of the orthogonal coordinates, assume especially
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simple forms if expressed in terms of physical components.

Nr (Eh , + v 5.2.7

r - 1 -G 21) Eo 5.2.8

N Eh 0
N - (Go + 2 r), 5.2.9

Mr= E ( Kr-+ 2K ), 5.2.10

Eh 3

aro- z11(,-vz) (.-V) K r , 5.2.11

Eh3
MO 12(j-pz) (Kg0 ,v K r). 5.2.12

5.3 CARTESIAN PARAMETERS

The stress-strain relations to be used with the Cartesian

parameters take on rather imposing appearances.
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Eh)1+1 I2} Ta .3.2Y) ,

22222

5.3.1

Eh 8  
y2IX)

(x Y)x I + (1+x )1 y ] XT r2} 5.3.34

F$3  
*7 1I 2~ (-X(, ) y f

v f j2(. V1) 16f 4 ( 4+ X 2 1. Y

5.6



Eh3  4 I -r2 A11(z 2)]L

A(Y(tZ 12 + (:+ 2 ) 2 k22J 5.3.6

These equations look just as, if not more imposing, when

the physical components of the tensors are used.

+(iT v 0-.X)(I~yzi[x)5..

If+, "" 53.7

VO X') 1 55.7



MX h~ 1+ cK
_1?j7jz T 4.2yj IVCI 7  T2+~ )

21i' +~ y 5 )y~.3.10
FEh' iF.Y xK 1 1/2F _____

I[ vZ-) X 2 y2 1
5.3.1

3 x4

m Z.1) I A 24. /2 + -+ 4
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